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Abstract

This paper presents a stochastic solution procedure for the calculation of the non-stationary freefield
response due to a moving load with a random amplitude. In this case, a non-stationary autocorrelation
function and a time-dependent spectral density are required to characterize the response at a fixed point in
the freefield. The non-stationary solution is derived from the solution in the case of a moving load with a
deterministic amplitude. It is shown how the deterministic solution can be calculated in an efficient way by
means of integral transformation methods if the problem geometry exhibits a translational invariance in the
direction of the moving load. A key ingredient is the transfer function between the source and the receiver
that represents the fundamental response in the freefield due to an impulse load at a fixed location. The
solution in the case of a moving load with a random amplitude is formulated in terms of the double forward
Fourier transform of the non-stationary autocorrelation function. The solution procedure is illustrated
with an example where the non-stationary autocorrelation function and the time-dependent standard
deviation of the freefield response are computed for a moving harmonic load with a random phase shift.
The results are compared with the response in the deterministic case.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Ground-borne traffic-induced vibrations in buildings are a matter of growing environmental
concern. Vibrations induced by road traffic are mainly due to heavy vehicles that pass at relatively
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high speed on a road with an uneven surface. The growing traffic volume, the higher vehicle
speeds and the larger axle loads are generally considered to be responsible for the increasing
nuisance due to road traffic-induced vibrations. Considering rail traffic, vibration nuisance is
related to increasing train speeds and larger freight loads.
In various prediction models for traffic-induced vibrations, solution procedures are presented

that allow for the computation of the response to deterministic moving loads. These procedures
are based on a Galilean transformation to the moving frame of reference or on the application of
the Betti–Rayleigh reciprocal theorem [1]. An extensive survey of calculation methods for solids
or structures under moving loads is given by Fr!yba [2].
M .uller [3] and M .uller and Huber [4] have solved the problem of a layered visco-elastic half-

space subjected to a constant and a transient moving load in the frequency–wavenumber domain
ðkx; ky; z;oÞ: Similarly, de Barros and Luco [5,6] have studied the steady state response of a
layered visco-elastic half-space due to a constant moving load. Grundmann et al. [7] have
considered the same problem and applied an additional wavelet transform on the response of the
layered half-space in the frequency–wavenumber domain in order to efficiently evaluate the
inverse wavenumber domain transformations.
For a 3D problem geometry that is invariant in the direction ey of the moving load, Aubry et al.

[8], Clouteau [9] and Clouteau et al. [10] derive a solution in the frequency–wavenumber domain
ðx; ky; z;oÞ: Hardy [11], Madshus and Kaynia [12] and Degrande and Lombaert [13] show how
this formulation results in a graphical representation that is useful for the study of the generation
of waves by moving loads.
Road and railway unevenness are often described as a stationary random process by means of

the power spectral density (PSD) function in terms of the wavenumber ky ¼ 2p=ly along the road
[14,15] or the railway track. Whereas the axle loads of the vehicles represent a stationary random
process as well, this is not the case for the vibrations observed in the freefield. This is due to the
fact that, for a receiver at a fixed position in the freefield, the vibration level depends on the
position y of the vehicle along the road or on the time t and is therefore a non-stationary random
process. As a result, non-stationary stochastic methods are required for the statistical
characterization of the response.
Stationary stochastic methods can only be applied if the motion of the axle loads is neglected

[16,17]. Alternatively, Sun and Greenberg [18] have proposed to consider the stationary problem
of the response in a frame of reference that moves with the source.
In the following, the Wigner–Ville method [19] is applied to calculate the time-dependent

statistical characteristics of the freefield response for a moving load with a random amplitude [20].
First, the deterministic solution procedure is briefly recapitulated [21]. The dynamic
Betti–Rayleigh reciprocity theorem is used to compute the response for a moving load from
the fundamental response for an impulse load at a fixed position. Next, it is shown how these
deterministic results are used to calculate the double power spectral density and the Wigner–Ville
distribution. Finally, the solution procedure is illustrated for the case of a moving harmonic load
with a random phase shift. The time-dependent standard deviation of the freefield response is
calculated for two source speeds.
This solution method has been developed as a part of a numerical model for the freefield

vibrations induced by road [21] and railway [22–24] traffic. The model has been extensively
validated by means of in situ measurements [22–26].
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2. The response for a set of deterministic moving loads

2.1. Introduction

The response of a road–soil or a railway track–soil system to a moving load has recently
received considerable attention in the literature [10–13,21]. The solution of this problem enables
the study of the dynamic road or railway track response and the vibrations produced in the
freefield.
In the case where the problem geometry is invariant in the direction of the moving load, the

dynamic Betti–Rayleigh reciprocal theorem can be used to compute the response for a moving
load from the solution for an impulse load at a fixed position [1,10,13,21], which is considered as a
source–receiver transfer function.
In the following, it is first shown how the track–soil transfer function can be calculated in an

efficient way by means of integral transformation methods. Next, the transfer function is used to
calculate the response in the case of a time-dependent moving load. Finally, the special case of a
harmonic moving load is considered.

2.2. The response for a fixed impulse load

The calculation of the track–soil transfer function requires the solution of the equations of
motion of the coupled track–soil system for an impulse load at a fixed position (Fig. 1). In the case
where the track is invariant in the longitudinal direction ey; this solution can be efficiently
obtained in the frequency–wavenumber domain ðx; ky; z;oÞ [13,21].
The double forward Fourier transformation from the spatial domain ðx; y; z; tÞ to the

frequency–wavenumber domain is defined as follows. First, the Fourier transform of f ðx; y; z; tÞ
with respect to the time t; denoted as #f ðx; y; z;oÞ; is obtained by the following transformation
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Fig. 1. The freefield response for an impulse load at a fixed position fxS ; 0; zSg
T along the source path.
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from the time t to the circular frequency o:

#f ðx; y; z;oÞ ¼
Z þN

�N

f ðx; y; z; tÞ expð�iotÞ dt: ð1Þ

Next, the forward Fourier transform of #f ðx; y; z;oÞ with respect to y; denoted as *f ðx; ky; z;oÞ; is
obtained by a transformation from the horizontal co-ordinate y to the horizontal wavenumber ky:

*f ðx; ky; z;oÞ ¼
Z þN

�N

#f ðx; y; z;oÞ expðþikyyÞ dy: ð2Þ

The numerical models currently used to predict road or railway traffic-induced vibrations are
often based on the model of an elastic beam, coupled to a horizontally layered half-space. In the
case of railway traffic, other elements are coupled to the beam to model the rails, the sleepers and
the railway pads. In both the case of road or railway traffic, however, the equations of motion in
the frequency–wavenumber domain can be formulated as follows:

½ *Kr þ *Ks	*ur ¼ *fr; ð3Þ

where *Kr is the dynamic impedance of the road or the railway track, *Ks denotes the soil
impedance, *ur is the vector that collects the displacements of the road or the railway track and *fr

contains the contribution from the fixed impulse load. In the present paper, a road model is
considered, where the road is represented by a beam which longitudinal bending and torsional
deformations are accounted for. In this case, the vector *ur contains the vertical displacement *ucz of
the section’s centre of gravity and the rotation *bcy about this centre.
This results in the following decomposition of the road displacements in the frequency–

wavenumber domain:

*urzðx; ky;oÞ ¼ *uczðky;oÞ þ x *bcyðky;oÞ ¼ /rðxÞ*ur: ð4Þ

The vector /r ¼ f1; xgT collects the displacement modes of the rigid cross-section. The
displacements *ur can also be considered as the unknown modal co-ordinates *a of the road’s
deformation modes.
The road impedance matrix *Kr contains the contribution from the road’s longitudinal bending

and torsional stiffness:

*Kr ¼
EIxk4

y � rAo2 0

0 GCk2
y � rIpo2

" #
; ð5Þ

where A is the road’s cross-section, Ix the moment of inertia with respect to x; C the torsional
moment of inertia and Ip the polar moment of inertia; E is Young’s modulus, G the shear modulus
and r the density of the road.
The contribution of the soil to the impedance of the coupled road–soil system follows from the

equilibrium at the road–soil interface S and is calculated as follows:

*Ks ¼
Z
S

/r
*tszð */sÞ dG; ð6Þ

where *tszð */sÞ is the frequency–wavenumber domain representation of tszð/sÞ; the vertical
component of the soil tractions ts ¼ ssn on a boundary with a unit outward normal n for the
wave fields */s scattered by the road’s deformation modes /r:
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A boundary element method is used to calculate the soil tractions *tszð */sÞ at the road–soil
interface [8,21]. The boundary element formulation is based on the formulation of the boundary
integral equations in the frequency–wavenumber domain, using the Green’s functions of a
horizontally layered elastic half-space [27–29].
The force vector *fr contains the contribution of the impulse load applied in the point ðxS; 0; zSÞ

of the road–soil interface S and is equal to f1; xSg
T in the present case.

The solution of the system of Eq. (3) gives the complex participation factors *a: The soil
tractions *tszð*usÞ at the road–soil interface are calculated from the participation factors as *tszð */sÞ*a:
The reciprocity theorem is used for the calculation of the road–soil transfer function

*hziðx1; ky; x3;oÞ from the soil tractions *tszð */sÞ*a:

*hziðx1; ky; x3;oÞ ¼
Z
S
*uG

ziðx1 � x; ky; x3;oÞ*tszðx; ky; z ¼ 0;oÞ dG; ð7Þ

where *uG
ziðx1; ky; x3;oÞ denotes the Green’s function that represents the fundamental solution for

the displacement component i due to a vertical impulse load. A double inverse Fourier
transformation from the frequency–wavenumber domain to the time-spatial domain results in the
transfer function hziðx1; x2; x3; tÞ:

2.3. An arbitrary time-dependent moving load

The dynamic Betti–Rayleigh reciprocal theorem specifies the relations between the field
variables in two elastodynamic states. In the unknown first state, a vertical moving load
rbjðx; tÞ ¼ dðx� xSkðtÞÞgkðtÞdzj is considered, where xSkðtÞ denotes the time-dependent position
fxS; yk þ vt; zSg

T of the load and gkðtÞ the time history. The second state is the case where an
impulse load is applied at the point fxS; 0; zSg

T (Fig. 1).
In the case where the problem geometry is invariant in the direction ey of the moving load, the

following expression can be derived for the unknown response usiðx; y; z; tÞ:

usiðx; y; z; tÞ ¼
Z t

�N

gkðtÞhziðx; y � yk � vt; z; t � tÞ dt: ð8Þ

The co-ordinates fx; y � yk � vt; zgT in the argument of the transfer function correspond to a
receiver that moves in the opposite direction of the moving source. The motion of the source is
replaced by an equivalent motion of the receiver.
In Section 2.2, it has been shown how the transfer function can be efficiently computed by

means of a transformation from the spatial-time domain ðx; y; z; tÞ to the frequency–wavenumber
domain ðx; ky; z;oÞ: It is therefore advantageous to apply a similar double forward Fourier
transformation to Eq. (8):

*usiðx; ky; z;oÞ ¼
Z þN

�N

Z þN

�N

gkðtÞ #hziðx; y � yk � vt; z;oÞ expð�iotÞ dt expðþikyyÞ dy: ð9Þ

This equation can be further elaborated, yielding the following solution in the frequency–
wavenumber domain [30]:

*usiðx; ky; z;oÞ ¼ #gkðo� kyvÞ *hziðx; ky; z;oÞ expðþikyykÞ: ð10Þ
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The response is computed as the product of the transfer function and the frequency content of the
source, provided that the latter is shifted by kyv: For a limiting small velocity v; this shift tends to
zero and the solution for the case of a load at a fixed position is recovered.
The frequency content #usiðx; y; z;oÞ of the response can be computed as the inverse wavenumber

domain transformation:

#usiðx; y; z;oÞ ¼
1

2p

Z þN

�N

#gkðo� kyvÞ *hziðx; ky; z;oÞ exp½�ikyðy � ykÞ	 dky: ð11Þ

A change of variables according to ky ¼ ðo� *oÞ=v moves the frequency shift from the frequency
content of the moving load to the wavenumber content of the transfer function:

#usiðx; y; z;oÞ

¼
1

2pv

Z þN

�N

#gkð *oÞ *hzi x;
o� *o

v
; z;o

� �
exp �i

o� *o
v

� �
ðy � ykÞ

� �
d *o: ð12Þ

The frequency content #gkð *oÞ of the load and the displacement #usiðx; y; z;oÞ are coupled through
the wavenumber at which the transfer function is evaluated. For a limiting large velocity v; the
wavenumber ky ¼ ðo� *oÞ=v tends to zero and the solution for the 2D case of a line load along the
path of the moving source is obtained.
The response in the time domain is finally obtained as the inverse Fourier transform of Eq. (12):

usiðx; y; z; tÞ ¼
1

2p

Z þN

�N

#usiðx; y; z;oÞ expðþiotÞ do: ð13Þ

The response for a set of moving axle loads is found from superposition (summation on k).

2.4. A harmonic moving load

In the case of a harmonic moving load, the time history gðtÞ is equal to P expðþi *oStÞ and the
frequency content #gð *oÞ equals 2pPdð *o� *oSÞ: The introduction of #gð *oÞ in Eq. (12) results in the
following expression for the freefield displacements:

#usiðx; y; z;oÞ ¼
1

v
*hzi x;

o� *oS

v
; z;o

� �
exp �i

o� *oS

v

� �
y

� �
: ð14Þ

This equation shows that the response at a circular frequency o for a harmonic moving load is
proportional to the transfer function *hziðx; ky; z;oÞ; where the horizontal wavenumber ky is
evaluated at ðo� *oSÞ=v:
The relations ky ¼ ðo� *oSÞ=v and Cy ¼ o=ky; with Cy the phase velocity in the y direction, are

used to write the circular frequency o at the receiver as o ¼ *oS=ð1� v=CyÞ: When the source
approaches, the response is mainly composed of waves that travel in the positive y direction and
the circular frequency *oS emitted at the source results in higher frequencies *oS=ð1� v=CyÞ at the
receiver. When the source recedes, the response is mainly composed of waves that travel in
the negative y direction with a negative phase velocity Cy and the circular frequency *oS emitted at
the source results in lower frequencies at the receiver. This phenomenon is known as the Doppler
effect.
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2.5. Numerical examples

In the following numerical examples, the freefield response is computed for the case of a
harmonic load moving on a road supported by a homogeneous half-space.
The road is modelled as a beam with a rigid cross-section supported by a horizontally layered

half-space. Both the road’s longitudinal bending and torsional deformations are taken into
account [21].
The road has a width 2B ¼ 3 m; a bending stiffness EI ¼ 1:611
 108 Nm2; a mass per unit

length rA ¼ 3:282
 103 kg=m; a torsional stiffness rIp ¼ 2:603
 103 kg m and a torsional
moment of inertia GC ¼ 2:094
 108 Nm2: The soil is modelled as a homogeneous half-space
with a density r ¼ 1800 kg=m3; a shear (S-) wave velocity Cs ¼ 150 m=s; a dilatational (P-) wave
velocity Cp ¼ 300 m=s and a hysteretic material damping ratio b ¼ 0:025 in shear and volumetric
deformation. The ratio s of the body wave velocities Cs and Cp equals 0.5 for n ¼ 1=3: The
Rayleigh or surface (R-) wave velocity CR ¼ 140 m=s and is slightly lower than the S-wave
velocity. The S-wave velocity Cs of the supporting half-space is used to define the dimensionless
wavenumber %ky ¼ kyCs=o:
The dynamic road–soil interaction problem is solved by means of a substructure method in the

frequency–wavenumber domain ðx; ky; z;oÞ [8,21]. The soil’s impedance is calculated by means of
a boundary element method, that is based on the Green’s functions of the horizontally layered
half-space [28,29,31–33]. The road–soil transfer functions are calculated at the soil’s free surface at
distances x equal to 8 and 40 m from the road, for frequencies between 0.5 and 50 Hz; with a step
Df ¼ 0:50 Hz; and dimensionless wavenumbers %ky ¼ kyCs=o between 0 and 1.50, with a step
D %ky ¼ 0:01 [30].
The freefield displacements are calculated for a vertical harmonic load with a time history

gðtÞ ¼ cosð *oStÞ ¼ 0:50½expðþi *oStÞ þ expð�i *oStÞ	 with *oS ¼ 2p15 rad=s and an initial position
yk ¼ 0: Two source speeds v ¼ 20 m=s and v ¼ 60 m=s are considered.
It can be shown that, for load speeds v that are low compared to the Rayleigh wave velocity CR;

the contribution of the term 0:50 expð�i *oStÞ to the frequency content #usiðx; y; z;oÞ at positive
circular frequencies o can be neglected compared to the contribution of the term 0:50 expðþi *oStÞ
[30]. The opposite is true for negative o:
The frequency content of the response (Fig. 2a) is calculated upto 50 Hz by means of Eq. (14),

with a step Df ¼ 0:0244 Hz ðN ¼ 2048Þ; corresponding to a period T ¼ 40:96 s and a time step
Dt ¼ 0:01 s: Each signal is denoted by a label FFij, where FF denotes the freefield, i the
x-coordinate of the receiver and j the component ex; ey or ez:
The frequency content of the x-component does not show sharp peaks. From Eq. (14), it

follows that the response is mainly situated in a frequency band ½ *oS=ð1þ v=CRÞ; *oS=ð1� v=CRÞ	
with a width *oS½2v=CRð1� ðv=CRÞ

2Þ	 that is proportional to *oS: For small speeds v with respect to
CR; this bandwidth is proportional to v as 2 *oSv=CR:
The frequency content of the y-component presents 4 sharp peaks. These peaks correspond to

the contribution of the P-, S- and R-waves in the y direction during the approaching and the
receding of the source. For a wave with a velocity C; the location of the peaks in the frequency
domain can be estimated as *o=ð17v=CÞ: The P-wave velocity Cp is much larger than the R- and
S-wave velocities Cs and CR; the peaks that correspond to this type of wave are located near *oS:
CR is close to Cs and the contributions of these waves at both other peaks in Fig. 2b are not
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distinguishable. The contribution at o ¼ *oS is zero as, according to Eq. (14), ky ¼ 0 at this
frequency and waves propagate in the x direction only.
The frequency content of the vertical component of the displacements is dominated by the

contribution of the S- and R-waves.
The time histories in Fig. 2b are calculated by means of a FFT algorithm. The response is nearly

periodic with a period T ¼ 2p=oS: Due to the Doppler effect, the period is smaller during the
approaching of the source and larger during the receding. The amplitude is approximately
inversely proportional to the distance between the source and the receiver. The interference
between P-, S- and R-waves influences the time history of the horizontal components. The x- and
z-component have the same order of magnitude. At t=0, the source and the receiver are at the
same y-co-ordinate and the x- and z-component are maximal, while the y-component vanishes.
Fig. 3 shows similar results for the response at 40 m from the centre of the road. The

contribution of the body and surface waves in the y direction no longer dominates the frequency
content at a large distance x: The duration of the transient signals is larger.
Fig. 4 shows similar results for a load speed v ¼ 60 m=s: Eq. (14) indicates that, for a larger load

speed v; the frequency content is situated in a wider frequency range. As according to Eq. (14), the
frequency content of the response is inversely proportional to the load speed v and the modulus of
the response in Fig. 4a at a circular frequency o ¼ *oS is exactly one third of the value in Fig. 2b.
Fig. 4b shows the time history of the freefield displacements. Due to the larger speed of the source,
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Fig. 2. (a) Frequency content and (b) time history of the freefield displacement at x ¼ 8 m for a moving harmonic load

with a frequency *oS ¼ 2p15 Hz and a speed v ¼ 20 m=s:
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the duration of the passage is shorter and the Doppler effect is more pronounced. The peak
displacement has the same order of magnitude as in the case where v ¼ 20 m=s:
Fig. 5 shows similar results for the response at 40 m from the centre of the road. The

frequency content shows no peaks and almost has a uniform value in the frequency band
½ *o=ð1þ v=CRÞ; *o=ð1� v=CRÞ	: The transient signal has a smaller duration than in Fig. 3c, whereas
the peak displacement has the same order of magnitude.
The foregoing results indicate that, if the speed v of the load is low with respect to the wave

velocities in the soil, the peak response is mainly determined by the distance between the source
and the receiver.

3. The response for a set of random moving loads

3.1. Introduction

The previous examples show how the vibration levels vary as the deterministic moving load
passes a receiver. Even in the case where the time history of the load is a stationary random
process, the motion of the load results in a non-stationary response. The statistical properties are
time-dependent and can be computed using non-stationary stochastic methods.
In the following, the Wigner–Ville method is used to characterize the time-dependent statistical

properties of the response due to a random moving load. First, the definitions of the local
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Fig. 3. (a) Frequency content and (b) time history of the freefield displacement at x ¼ 40 m for a moving harmonic load

with a frequency *oS ¼ 2p15 Hz and a speed v ¼ 20 m=s:
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autocorrelation function and the double spectral density are briefly recapitulated. Next, the
deterministic solution is used to compute the double spectral density of the response due to a
random moving load. Finally, the special case of a random harmonic moving load is considered
and the solution procedure is illustrated.

3.2. The Wigner–Ville method

The Wigner–Ville method [19] is based on the work of Wigner [34] in the field of quantum
mechanics and the work of Ville [35] in signal theory. This method offers an alternative approach
for the calculation of the statistical characteristics of non-stationary processes. It is based on the
use of an instantaneous autocorrelation function, defined as follows [19] for a random process
xðtÞ:

Rxðt0; t1Þ ¼ E x t0 �
t1

2

� 	
x t0 þ

t1

2

� 	h i
; ð15Þ

where t0 represents the absolute time and t1 is the separation time. The latter has a similar role as
the argument t in the definition of the stationary autocorrelation function RxðtÞ ¼ E½xðtÞxðt þ tÞ	:
By definition, the evaluation of the instantaneous autocorrelation function Rxðt0; t1Þ at t1 ¼ 0
gives the mean square value of xðt0Þ:

Rxðt0; 0Þ ¼ E½x2ðt0Þ	 ¼ s2xðt0Þ þ m2
xðt0Þ: ð16Þ
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Fig. 4. (a) Frequency content and (b) time history of the freefield displacement at x ¼ 8 m for a moving harmonic load

with a frequency *oS ¼ 2p15 Hz and a speed v ¼ 60 m=s:
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For a random process xðtÞ with a zero mean value mxðt0Þ; Rxðt0; 0Þ is equal to the square of the
standard deviation sxðt0Þ; or:

sxðt0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rxðt0; 0Þ

p
: ð17Þ

For a stationary random process xðtÞ; the standard deviation and the mean value are independent
of the absolute time t0:
The autocorrelation function Rxðt0; t1Þ and the instantaneous spectral density Sxðt0;o0Þ of the

non-stationary random process xðtÞ are a Fourier transform pair with respect to the dual variables
t1 and o0:

Rxðt0; t1Þ ¼
1

2p

Z
N

�N

Sxðt0;o0Þ expðþio0t1Þ do0;

Sxðt0;o0Þ ¼
Z þN

�N

Rxðt0; t1Þ expð�io0t1Þ dt1: ð18Þ

The instantaneous spectral density is a measure of the frequency content of the
random process xðtÞ at a fixed time t0: For a stationary process xðtÞ; the instantaneous
spectral density does not vary with t0: Sxðt0;o0Þ is also referred to as the Wigner–Ville
distribution.
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Fig. 5. (a) Frequency content and (b) time history of the freefield displacement at x ¼ 40 m for a moving harmonic load

with a frequency *oS ¼ 2p15 Hz and a speed v ¼ 60 m=s:
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The instantaneous spectral density function Sxðt0;o0Þ and the double power spectral density
Sxðo1;o0Þ are a Fourier transform pair with respect to the dual variables t0 and o1:

Sxðt0;o0Þ ¼
1

2p

Z
N

�N

Sxðo1;o0Þ expðþio1t0Þ do1;

Sxðo1;o0Þ ¼
Z þN

�N

Sxðt0;o0Þ expð�io1t0Þ dt0: ð19Þ

The double power spectral density Sxðo1;o0Þ is a measure of the variation of the instantaneous
spectral density function Sxðt0;o0Þ with respect to t0: For a stationary random process xðtÞ; the
double power spectral density Sxðo1;o0Þ is zero for all o1 but o1 ¼ 0; where its value is undefined.
Analogously, for a process where the statistical properties vary slowly, large values of Sxðo1;o0Þ
are concentrated at low circular frequencies o1:
For a real-valued random process xðtÞ; the following expression can be derived for the double

power spectral density Sxðo1;o0Þ:

Sxðo1;o0Þ ¼ E #x� o0 �
o1

2

� 	
#x o0 þ

o1

2

� 	h i
ð20Þ

where the superscript � denotes the complex conjugate. For an arbitrary real-valued non-
stationary process, the local spectral density Sxð�o1;o0Þ is equal to the complex conjugate
S�x ðo1;o0Þ: Under the same conditions, Sxðo1;�o0Þ is equal to Sxðo1;o0Þ:

3.3. A set of arbitrary random moving loads

Consider a set of moving loads rbjðx; tÞ ¼
Pn

k¼1; dðx� xSkðtÞÞgkðtÞdzj with a time-dependent
position xSkðtÞ ¼ fxS; yk þ vt; zSg

T and a time history gkðtÞ: The stationary random process gkðtÞ is
characterized by the autocorrelation function Rgk

ðtÞ and the spectral density Sgk
ðoÞ: Rgkl

ðtÞ
and Sgkl

ðoÞ represent the cross-correlation and the cross-power spectral density of gkðtÞ
and glðtÞ:

Suikl
ðx;o1;o0Þ denotes the cross-power spectral density of the soil’s response at a point x ¼

fx; y; zgT in the direction ei for two random moving loads gkðtÞ and glðtÞ and is calculated
according to Eq. (20), where the frequency content of the response to a single axle load is
computed by means of Eq. (12):

Suikl
ðx;o1;o0Þ ¼E

1

2pv

Z þN

�N

#g�k ð *oÞ *h
�
zi x;

o0 � ðo1=2Þ � *o
v

; z;o0 �
o1

2

� ���


 exp þi
o0 � ðo1=2Þ � *o

v

� �
ðy � ykÞ

� �
d *o

�



1

2pv

Z þN

�N

#glð *o0Þ *hzi x;
o0 þ ðo1=2Þ � *o0

v
; z;o0 þ

o1

2

� ��


 exp �i
o0 þ ðo1=2Þ � *o0

v

� �
ðy � ylÞ

� �
d *o0

��
: ð21Þ
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As the position of the load is known exactly, the expectation is restricted to the random character
of the load:

Suikl
ðx;o1;o0Þ ¼

1

4p2v2

Z þN

�N

Z þN

�N

E½ #g�k ð *oÞ #glð *o0Þ	


 *h�zi x;
o0 � ðo1=2Þ � *o

v
; z;o0 �

o1

2

� �


 exp þi
o0 � ðo1=2Þ � *o

v

� �
ðy � ykÞ

� �


 *hzi x;
o0 þ ðo1=2Þ � *o0

v
; z;o0 þ

o1

2

� �


 exp �i
o0 þ ðo1=2Þ � *o0

v

� �
ðy � ylÞ

� �
d *o d *o0: ð22Þ

For two stationary random processes gkðtÞ and glðtÞ; it can be shown that

E½ #g�k ð *oÞ #glð *o0Þ	 ¼ 2pdð *o0 � *oÞSgkl
ð *o0Þ: ð23Þ

If this relation is introduced in Eq. (22), the following expression is obtained:

Suikl
ðx;o1;o0Þ ¼

1

2pv2

Z þN

�N

Sgkl
ð *oÞ 
 *h�zi x;

o0 � ðo1=2Þ � *o
v

; z;o0 �
o1

2

� ��


 *hzi x;
o0 þ ðo1=2Þ � *o

v
; z;o0 þ

o1

2

� �


 exp �i
o0 � *o

v

� �
ðyk � ylÞ

� �
d *o

�


 exp �i
o1

2v

� 	
ð2y � yk � ylÞ

h i
: ð24Þ

The total power spectral density Sui
ðx;o1;o0Þ is equal to the superposition of the auto-power

spectral densities Suikk
ðx;o1;o0Þ and the cross-power spectral densities Suikl

ðx;o1;o0Þ:

Sui
ðx;o1;o0Þ ¼

Xn

k¼1

Xn

l¼1

Suikl
ðx;o1;o0Þ: ð25Þ

The double power spectral density of the response is coupled to the PSD of the source through the
wavenumber at which the transfer functions are evaluated.
In a similar way as in Eq. (12) for the computation of the deterministic response, the calculation

of the double power spectral density of the response is based on the representation of the source–
receiver transfer function in the frequency–wavenumber domain.
For a receiver at a position xkl ¼ fx; ðyk þ ylÞ=2; zg

T; the cross-power spectral density
Suikl

ðxkl ;o1;o0Þ is equal to the bracketed integral in Eq. (24). This equation can therefore be
rewritten as follows:

Suikl
ðx;o1;o0Þ ¼ Suikl

ðxkl ;o1;o0Þ exp �i
o1

2v

� 	
ð2y � yk � ylÞ

h i
: ð26Þ
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The instantaneous spectral density function is obtained as the inverse Fourier transform of
Suikl

ðx;o1;o0Þ with respect to the circular frequency o1:

Suikl
ðx; t0;o0Þ ¼

1

2p

Z
N

�N

Suikl
ðxkl ;o1;o0Þ


 exp �i
o1

2v

� 	
ð2y � yk � ylÞ

h i
expðþio1t0Þ do1: ð27Þ

The exponential functions are collected as follows:

Suikl
ðx; t0;o0Þ ¼

1

2p

Z
N

�N

Suikl
ðxkl ;o1;o0Þ


 exp þio1 t0 �
2y � yk � yl

2v

� �� �
do1: ð28Þ

The term ð2y � yk � ylÞ=2v is a time shift applied on the instantaneous spectral density of the
response at the point xkl:

Suikl
ðx; t0;o0Þ ¼ Suikl

xkl ; t0 �
2y � yk � yl

2v
;o0

� �
: ð29Þ

3.4. A single random moving load

For a single random moving load, characterized by an autocorrelation RgðtÞ and a PSD SgðoÞ;
the double summation in Eq. (25) reduces to a single term and Eq. (24) can be further simplified:

Sui
ðx;o1;o0Þ ¼

1

2pv2

Z þN

�N

Sgð *oÞ *h�zi x;
o0 � ðo1=2Þ � *o

v
; z;o0 �

o1

2

� ��


 *hzi x;
o0 þ ðo1=2Þ � *o

v
; z;o0 þ

o1

2

� �
d *o

�


 exp �i
o1

v

� 	
ðy � ykÞ

h i
: ð30Þ

For a receiver at xk ¼ fx; yk; zg
T; the double power spectral density Sui

ðxk;o1;o0Þ is equal to the
bracketed integral, so that Eq. (30) can be rewritten as follows:

Sui
ðx;o1;o0Þ ¼ Sui

ðxk;o1;o0Þ exp �i
o1

v

� 	
ðy � ykÞ

h i
: ð31Þ

In a similar way as for the cross-power spectral density for a set of random moving loads, the
instantaneous spectral density at an arbitrary position x is calculated from the value at xk;
applying a time shift ðy � ykÞ=v:

Sui
ðx; t0;o0Þ ¼ Sui

xk; t0 �
y � yk

v
;o0

� 	
: ð32Þ
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3.5. A single random harmonic moving load

Consider a single moving harmonic load gðtÞ ¼ P cosð *oSt þ fÞ with a random phase angle f
that is uniformly distributed in the interval ½0; 2p	: The autocorrelation function RgðtÞ is equal to
0:5P2 cosð *oStÞ and the power spectral density SgðoÞ equals 0:5pP2½dðo� *oSÞ þ dðoþ *oSÞ	 [19].
The double power spectral density Sui

ðxk;o1;o0Þ is computed according to Eq. (30):

Sui
ðxk;o1;o0Þ ¼

P2

4v2
*h�zi x;

o0 � ðo1=2Þ � *oS

v
; z;o0 �

o1

2

� �


 *hzi x;
o0 þ ðo1=2Þ � *oS

v
; z;o0 þ

o1

2

� �

þ
P2

4v2
*h�zi x;

o0 � ðo1=2Þ þ *oS

v
; z;o0 �

o1

2

� �


 *hzi x;
o0 þ ðo1=2Þ þ *oS

v
; z;o0 þ

o1

2

� �
: ð33Þ

Comparison with Eq. (14) demonstrates that the first term on the right-hand side of this equation
represents the product of the frequency content of the response at a circular frequency o0 � o1=2
and o0 þ o1=2; respectively, due to a deterministic harmonic source at *oS: The second term in this
equation represents the contribution from a harmonic source at � *oS:
In the previous examples, it has been shown that the response to a deterministic harmonic

source at a circular frequency *oS and with a speed v is mainly situated in the frequency band
½ *oS=ð1þ v=CRÞ; *oS=ð1� v=CRÞ	: As a result, the first term on the right-hand side of Eq. (33)
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Fig. 6. The diamond-shaped area in the ðo0;o1Þ-domain where inequalities (34) are met.
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contributes significantly if o0 � o1=2 and o0 þ o1=2 satisfy the following inequalities:

*oS

ð1þ v=CRÞ
po0 �

o1

2
p

*oS

ð1� v=CRÞ
and

*oS

ð1þ v=CRÞ
po0 þ

o1

2
p

*oS

ð1� v=CRÞ
; ð34Þ

which defines a diamond-shaped area in the ðo0;o1Þ-domain (Fig. 6).
Analogously, the second term on the right-hand side of Eq. (33) determines a diamond-shaped

area in the ðo0;o1Þ-domain that is the mirrored shape of the area in Fig. 6. For the contribution of
the P- and S-waves similar diamond shaped areas are found.
The foregoing discussion illustrates that the frequency content of the double power spectral

density Sui
ðxk;o1;o0Þ with respect to o0 is similar to the frequency content of the response in the

deterministic case. The frequency content of Sui
ðxk;o1;o0Þ with respect to o1 is situated at lower

frequencies. This indicates that the variation of the instantaneous autocorrelation function with
the absolute time t0 is slower than the variation with the separation time t1; which is due to the
fact that the variation of the statistical properties of the response is slower than the variation of
the deterministic signal.

3.6. Analytical example

When the presence of the road is neglected and the moving load is directly applied at the free
surface of a homogeneous half-space, the contribution of the S-wave to the response at the free
surface is estimated as [10]:

usiðx; tÞE
dzi

r2t
f t �

rt

Cs

� �
; ð35Þ

where rt denotes the distance jjx� xSðtÞjj between the receiver and the moving source at the time t:
In the following, it is assumed that the moving load is initially located at the origin of the
Cartesian frame of reference, so that xSðtÞ ¼ f0; vt; 0gT: The function f depends on the material
properties of the half-space, on the receiver location x and on the time history of the moving load.
As the latter is a random process, f represents a random process as well.
The local autocorrelation function Rusz

ðx; t0; t1Þ is defined by Eq. (15):

Rusz
ðx; t0; t1Þ ¼E usz x; t0 �

t1

2

� 	
usz x; t0 þ

t1

2

� 	h i

EE
1

r2
t0þt1=2

f t0 þ
t1

2
�

rt0þt1=2

Cs

� �
1

r2
t0�t1=2

f t0 �
t1

2
�

rt0�t1=2

Cs

� �" #
: ð36Þ

When the time history of the load is a fast oscillating function of the time t; it can be assumed that
the variation of rt with t is small and the radii 1=rt0þt1=2 and 1=rt0�t1=2 are approximately equal to
1=rt0 :

Rusz
ðx; t0; t1ÞE

1

r4t0
E f t0 þ

t1

2
�

rt0þt1=2

Cs

� �
f t0 �

t1

2
�

rt0�t1=2

Cs

� �� �
: ð37Þ
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Assuming that t1 is small compared to t0; the radius rt0þt1=2 is approximated as

rt0þt1=2 ¼ rt0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

vt1ðy � vt0Þ
r2t0

s
Ert0 1�

vt1ðy � vt0Þ
2r2t0

" #
: ð38Þ

Eq. (38) is used to approximate the local autocorrelation function in Eq. (37) as

Rusz
ðx; t0; t1ÞE

1

r4t0
E f t0 þ

t1

2
�

rt0 1� vt1ðy�vt0Þ
2r2t0

� �
Cs

0
BB@

1
CCA

2
664


 f t0 �
t1

2
�

rt0 1þ vt1ðy�vt0Þ
2r2t0

� �
Cs

0
BB@

1
CCA
3
775: ð39Þ

The expected value in the right-hand side of Eq. (39) can be written as a function of the local
autocorrelation function Rf ðt0; t1Þ of the random process f :

Rusz
ðx; t0; t1ÞE

1

r4t0
Rf t0 �

rt0

Cs

; t1 1þ
v

Cs

ðy � vt0Þ
rt0

� �� �
: ð40Þ

The ratio ðy � vt0Þ=rt0 represents, at a time t0; the cosine of the angle yt0 between the direction of
propagation ey and the line that connects the source and the receiver. Eq. (40) can therefore be
rewritten as

Rusz
ðx; t0; t1ÞE

1

r4t0
Rf t0 �

rt0

Cs

; t1 1þ
v cos yt0

Cs

� �� �
: ð41Þ

The local spectral density Susz
ðx; t0;o0Þ is obtained as the forward Fourier transform of

Rusz
ðx; t0; t1Þ with respect to t1:

Susz
ðx; t0;o0ÞE

1

r4t0

Cs

jCs þ v cos yt0 j
Sf t0 �

rt0

Cs

;o0
Cs

Cs þ v cos yt0

� �� �
: ð42Þ

For a random harmonic load with a circular frequency *oS; the second argument of Sf is equal to
*oS and o0 ¼ *oSð1þ ðv cos yt0=CsÞÞ: The ratio Cs=cos yt0 denotes the phase velocity Csy of the
S-waves in the y-direction at a time t0: This relation can be compared to the exact relation
o ¼ *oS=ð1� v=CsyÞ as derived from the deterministic solution. For small velocities v with respect
to Cs; both relations yield similar results. The difference between both expressions is due to the
approximation in Eq. (38). These results indicate that the Doppler effect depends on the
projection of the speed v on the direction between the source and the receiver.
The contribution of the P- and R-waves can be estimated in a similar way, replacing Cs in

Eq. (42) by Cp or CR: In the latter case, however, the geometric attenuation in Eqs. (41) and (42) is
proportional to 1=rt0 instead of 1=r4t0 :
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3.7. Numerical examples

In the following numerical examples, the non-stationary freefield response is computed for the
case where a moving harmonic load gðtÞ ¼ cos ð *oSt þ fÞ with a uniformly distributed random
phase angle f is applied to a road supported by a homogeneous half-space. The circular frequency
*oS of the harmonic load is equal to 2p15 rad/s and two source speeds v ¼ 20 m=s and v ¼ 60 m=s
are considered.
Eq. (33) is used to compute the double power spectral density Sui

ðx;o1;o0Þ of the freefield
response for a frequency f0 upto 50 Hz; with Df0 ¼ 0:0488 Hz ðN0 ¼ 1024Þ; corresponding to a
period T1 ¼ 20:48 s and a time step Dt1 ¼ 0:01 s: The maximum value of f1 is equal to 12:5 Hz;
with Df1 ¼ 0:0488 Hz ðN1 ¼ 256Þ; corresponding to a period T0 ¼ 20:48 s and a time step Dt0 ¼
0:04 s:
Fig. 7a shows a contour plot of the double power spectral density Sui

ðx;o0;o1Þ of the freefield
response at the soil’s surface at x ¼ 8 m: On these plots, it is indicated in which area of the
ðo0;o1Þ-domain the contribution of the R-, S- and P-waves is present. The contribution of
the R-waves is bounded by points located at (13:1 Hz; 0), (15:3 Hz; 4:4 Hz) and (17:5 Hz; 0). The
straight lines in the contour plots of the double power spectral density of the y- and z-component
of the response correspond to the peaks that are observed in the frequency content of the response
in the deterministic case (Fig. 2a).
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Fig. 7. (a) Double power spectral density Sui
ðx; yk; 0;o0;o1Þ and (b) instantaneous spectral density Sui

ðx; yk; 0;o0; t0Þ of
the freefield response at x ¼ 8 m for a random harmonic moving load with a frequency *oS ¼ 2p15 Hz and a speed

v ¼ 20 m=s: On both plots, the contribution of the R- (dotted line), S- (dashed line) and P-waves (dash–dotted line) is

indicated.
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Fig. 7b shows a contour plot of the instantaneous spectral density Sui
ðx;o0; t0Þ as a function of

the absolute time t0 and the circular frequency o0: The contribution of the S-, P- and R-waves has
been indicated using Eq. (42), where the approximate relation o0 ¼ *oSð1þ ðv cos yt0=CsÞÞ is
replaced by the exact relation o0 ¼ *oS=ð1� ðv cos yt0=CsÞÞ:
The instantaneous spectral density shows how the frequency content of the random process

varies with the absolute time t0: At t0p0; the source approaches and the frequency content with
respect to o0 is situated at frequencies higher than *oS; whereas at t0X0; the source recedes and the
frequency content is situated at o0 lower than *oS: As in Fig. 2b, it is observed that the frequency
shift for the P-waves is smaller than the shift for the R- and S-waves. This is due to the lower value
of the ratio v=Cp with respect to v=Cs and v=CR:
Fig. 8 shows similar results for the freefield response at 40 m from the centre of the road. The

frequency shift with respect to t0 now extends over a larger time due to the larger source–receiver
distance.
Similar results have been calculated for the case where the source speed v ¼ 60 m=s: The results

for the corresponding deterministic case are shown in Figs. 4 and 5. The double power spectral
density is calculated for a frequency f0 upto 50 Hz; with Df0 ¼ 0:0977 Hz ðN0 ¼ 512Þ;
corresponding to a period T1 ¼ 10:24 s and a time step Dt1 ¼ 0:01 s: The maximum value of f1
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Fig. 8. (a) Double power spectral density Sui
ðx; yk; 0;o0;o1Þ and (b) instantaneous spectral density Sui

ðx; yk; 0;o0; t0Þ of
the freefield response at x ¼ 40 m for a random harmonic moving load with a frequency *oS ¼ 2p15 Hz and a speed

v ¼ 20 m=s: On both plots, the contribution of the R- (dotted line), S- (dashed line) and P-waves (dash–dotted line) is

indicated.
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is equal to 25 Hz; with Df1 ¼ 0:0977 Hz ðN1 ¼ 256Þ; corresponding to a period T0 ¼ 10:24 s and a
time step Dt0 ¼ 0:02 s:
The contribution of the R-wave in Fig. 9a is bounded by points located at (10:5 Hz; 0),

(18:4 Hz; 15:8 Hz) and (26:3 Hz; 0). The range for the circular frequencies o1 and o0 in this area is
now approximately three times larger than for the case where the source speed v ¼ 20 m=s
(Fig. 7a). In a similar way as in the deterministic case (Fig. 4a), the contribution at frequencies o0

lower than *oS is larger than at frequencies higher than *oS: As the speed v of the source is three
times larger than in the previous case, the frequency shift with respect to t0 is much faster than
in Fig. 7b.
Fig. 10 shows similar results at 40 m from the centre of the road. When the results in Fig. 10b

are compared with the results in Figs. 8b and 9b, it is observed how the frequency shift with
respect to t0 depends on the distance x from the source line and the source speed v:
The instantaneous autocorrelation function Rui

ðx; t0; t1Þ is calculated as the inverse Fourier
transform of the instantaneous spectral density Sui

ðx; t0;o0Þ: The standard deviation sui
ðx; t0Þ of

the response is equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rui

ðx; t0; t1 ¼ 0Þ
p

:
Fig. 11 shows the standard deviation sui

ðx; t0Þ of the response as a function of the absolute time
t0; together with the freefield response usiðx; tÞ in the deterministic case (Fig. 2a), divided by a
factor

ffiffiffi
2

p
: In the stationary case where the load is applied at a fixed position, the response is a
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Fig. 9. (a) Double power spectral density Sui
ðx; yk; 0;o0;o1Þ and (b) instantaneous spectral density Sui

ðx; yk; 0;o0; t0Þ of
the freefield response at x ¼ 8 m for a random harmonic moving load with a frequency *oS ¼ 2p15 Hz and a speed

v ¼ 60 m=s: On both plots, the contribution of the R- (dotted line), S- (dashed line) and P-waves (dash–dotted line) is

indicated.
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purely harmonic signal at a circular frequency *oS: In this case, the standard deviation of the
response is equal to the amplitude of the signal, divided by a factor

ffiffiffi
2

p
: In the present case, the

response is nearly harmonic and it is noticed in Fig. 11 how the relation between the standard
deviation and the amplitude is nearly preserved.
The standard deviation shows a much smoother response and clearly follows the trend of the

amplitude of the deterministic response. At a distance of 40 m from the source line (Fig. 11b),
the standard deviation varies slowly with the absolute time t0: The number of periods of the
deterministic signal is high during the passage of the source. As the vehicle speed is low compared
to the wave velocities in the soil, the freefield response mainly depends on the distance between the
source and the receiver and the source can be assumed to be applied at a fixed position. In this
case, a stationary stochastic method can be used to predict the freefield response.
Fig. 12 shows similar results for the case where the source speed v ¼ 60 m=s: Comparison with

the results presented in Fig. 11 shows that the peak amplitude of the response is approximately the
same for both source speeds. This observation confirms that, for low speeds v with respect to the
wave velocities in the soil, the response mainly depends on the source–receiver distance.
The stochastic method clearly provides a useful tool for the prediction of the envelope of the
deterministic response.
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Fig. 10. (a) Double power spectral density Sui
ðx; yk; 0;o0;o1Þ and (b) instantaneous spectral density Sui

ðx; yk; 0;o0; t0Þ
of the freefield response at x ¼ 40 m for a random harmonic moving load with a frequency *oS ¼ 2p15 Hz and a speed

v ¼ 60 m=s: On both plots, the contribution of the R- (dotted line), S- (dashed line) and P-waves (dash–dotted line) is

indicated.
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4. Conclusions

In this paper, the Wigner–Ville method has been applied to characterize the non-stationary
statistical characteristics of the response at a fixed point in the freefield for a moving load with a
random amplitude. The main advantage of the presented solution procedure is that it allows for
a direct calculation of the time-dependent statistical properties of the response. In this way, a
calculation of the statistical properties by a large number of deterministic calculations is
avoided.
The solution is based on the known deterministic results in the case where the problem

geometry is invariant in the direction of the moving source. A key ingredient in
this solution procedure is the transfer function between the source and the receiver, that
represents the freefield response for an impulse load at a fixed position along the path of the
moving source.
The stochastic method is illustrated for the case of a moving harmonic load with a random

phase shift. The freefield response is calculated for two points in the freefield and two source
speeds. The Wigner–Ville distribution Sxðt0;o0Þ shows how the frequency content of the
response changes during the passage of the moving source and illustrates the Doppler effect.
The calculation of the time-dependent standard deviation of the response demonstrates how
the method can be employed to predict the freefield vibration levels.
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Fig. 11. The standard deviation sui
ðx; yk; 0; t0Þ of the freefield response at (a) x ¼ 8 m and (b) x ¼ 40 m for a random

harmonic moving load with a frequency *oS ¼ 2p 15 rad=s and a speed v ¼ 20 m=s: On these graphs, the deterministic

freefield response usiðx; yk; 0; tÞ=
ffiffiffi
2

p
is also shown.
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Numerical results indicate that, in the case where the ratio x=v of the receiver distance x and the
speed v is large with respect to the dominant period T ¼ 2p=oS of the source, a deterministic
analysis can be used to estimate the freefield vibration levels. If the response mainly depends on
the source–receiver distance, the contact point between the vehicle and the road can be assumed to
be fixed and a stationary stochastic analysis becomes applicable. The non-stationary method is
therefore particularly useful in the case where the distance from the source line is small and the
source speed is high.
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Fig. 12. The standard deviation sui
ðx; yk; 0; t0Þ of the freefield response at (a) x ¼ 8 m and (b) x ¼ 40 m for a random

harmonic moving load with a frequency *oS ¼ 2p 15 rad=s and a speed v ¼ 60 m=s: On these graphs, the deterministic

freefield response usiðx; yk; 0; tÞ=
ffiffiffi
2

p
is also shown.
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The model has been further elaborated for the prediction of railway traffic induced vibrations
within the frame of the STWW project IWT 000152 ‘‘Traffic induced vibrations in buildings’’,
supported by the Flemish Community.
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